
Improving I/O Performance using Soft-QoS Based

Dynamic Storage Cache Partitioning

Christina M Patrick

Penn State University

patrick@cse.psu.edu

Rajat Garg

Penn State University

rgarg@cse.psu.edu

Seung Woo Son

Argonne National Laboratory

sson@mcs.anl.gov

Mahmut Kandemir

Penn State University

kandemir@cse.psu.edu

Abstract—Resources are often shared to improve resource
utilization and reduce costs. However, not all resources exhibit
good performance when shared amongst multiple applications.
The work presented here focuses on effectively managing a
shared storage cache. In order to provide differentiated services
to applications exercising a storage cache, we propose a novel
scheme that uses curve fitting to dynamically partition the storage
cache. Our scheme quickly adapts to application execution
showing increasing accuracy over time. It satisfies application
QoS if it is possible to do so, maximizes the individual hit rates
of the applications utilizing the cache, and consequently increases
the overall storage cache hit rate. Through extensive trace driven
simulation, we show that our storage cache partitioning strategy
not only effectively insulates multiple applications from one
another, but also provides QoS guarantees to applications over a
long period of execution time. Using our partitioning strategy, we
were able to increase the individual storage cache hit rates of the
applications by 67% and 53% over the no-partitioning and equal-
partitioning schemes, respectively. Additionally, we improved the
overall cache hit rates of the entire storage system by 11% and
12.9% over the no-partitioning and equal-partitioning schemes,
respectively, while meeting the QoS goals all the time.

I. INTRODUCTION

Resources are often shared to help reduce administration

and maintenance costs, avoid under-utilization of resources,

and help the bursty workloads utilize resources that would be

otherwise lying idle. However, not all resources exhibit good

performance when shared amongst multiple applications. Prior

research has already shown that sharing the same storage cache

amongst multiple, simultaneously-executing applications can

degrade cache performance significantly and lead to unpre-

dictable performance at the user end [1].

The work presented in this paper focuses on improving

storage caching. We refer to the kernel buffer cache that

resides in main memory as the “storage cache.” There has

been extensive research [2], [3], [4], [5], [6], [7], [8], [9] done

on improving the effectiveness of storage caching. However,

there has been little research done in providing QoS guarantees

to multiple applications that exercise storage caches.

Storage cache partitioning has been proposed as a solution

to providing QoS guarantees to applications sharing a storage

cache. A storage cache can be partitioned statically or dynam-

ically. The easiest strategy is to partition the storage cache

equally among competing applications. While this scheme is

easy to implement and enables application isolation, it leads

to, first, under-utilization of resources. Second, a cache-hungry

application can suffer badly if its allocated cache space is

not sufficient to hold its entire working set. Third, in general,

any static partitioning has no way of adapting to the dynamic

modulations in cache space requirements. Consequently, dy-

namic cache partitioning seems to be a promising alternative to

static partitioning. However, optimal dynamic partitioning of

storage cache is not trivial in practice because (i) applications

typically have independent QoS demands which may not be

possible to satisfy at the same time; (ii) effects of cache space

allocation are not visible immediately. The effect of cache

space allocation accrues over time; (iii) cache space allocation

of one application significantly affects the cache hit rates of

other applications in the cache; (iv) the effect of cache space

allocation depends on application data reuse and locality as

well as data access pattern and more cache allocation does not

necessarily imply better hit rates [10]; and (v) the hit rate of an

application is dependent on the phase in which the application

is executing, making it difficult to implement a good dynamic

scheme. Hence, techniques that are used to enforce QoS in

resources such as CPU and network bandwidth cannot be

applied easily to cache space allocation. Motivated by these

observations, this paper makes the following contributions:

• We propose a QoS aware dynamic storage cache parti-

tioning scheme that employs curve fitting [11] to dynamically

partition the cache space amongst competing applications. Our

scheme could be used by a service provider to consolidate

several applications onto a single system in order to decrease

costs, at the same time maintaining a performance equivalent

to a stand-alone system where every application has its own

dedicated cache. The proposed scheme uses history infor-

mation to predict future cache space requirements. Since it

employs curve fitting, this scheme improves over time and

is able to capture the dynamic behavior of applications. The

results of our cache partitioning scheme are twofold. First,

our algorithm adapts the cache partition sizes amongst com-

peting applications in order to satisfy each application’s QoS.

Second, we distribute the remaining cache space amongst the

competing applications in a manner that helps an application

whose QoS is satisfiable to achieve its maximal (cache) hit rate

possible. Improving the storage cache hit rate of an application

is important because storage cache hit rate directly translates

to execution time [1], [12], [13], [6], [14], [15], [7], [16] of

an I/O-intensive application. Since we partition the remaining

cache capacity carefully across applications, this also helps
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Fig. 1. Shared storage cache architecture considered in our work.

maximize the overall storage cache hit rate. Our partitioning

scheme has a low overhead and, focuses on soft-QoS rather

than hard-QoS class of applications.

• Using extensive trace driven simulation, we first demon-

strate the interference caused due to the sharing of the storage

cache amongst multiple applications. Our experiments show

that the proposed dynamic storage cache partitioning scheme

is able to achieve the specified hit rate (QoS) if possible and

generates better results than both the equal-partitioning scheme

and no-partitioning scheme. For instance, when we used a

mixed workload of tpc-h, tpc-c, mplayer and lu, we were

able to increase the hit rate of lu by 67% in a 1GB cache

over the no-partitioning scheme. Additionally, When we used

a workload with multiple instances of lu, we were able to

increase the overall hit rate of the storage cache by 11% in a

256MB cache compared to the no-partitioning scheme.

Section II describes the shared storage cache architecture we

target. The details of our storage cache partitioning scheme are

given in Section III. Section IV discusses the two base schemes

against which we compare our proposed partitioning approach.

Section V describes our experimental setup, the workloads

we use, and the results obtained using our storage cache

partitioning algorithm. Section VI discusses prior research on

storage cache management, and Section VII summarizes our

work.

II. TARGET ARCHITECTURE

The work we present in this paper can be used to improve

the performance of a consolidated cache in an SMP/CMP

system, a consolidated NAS/SAN server that serves multiple

clients. We tested it on the target shared storage cache architec-

ture shown in Fig. 1. All applications running on a compute

node have access to a common shared cache1. The specific

storage cache architecture simulated in this work is similar

to the buffer cache in Linux. The kernel buffer cache that

resides in main memory acts as a storage cache2 in Linux. In

addition to a global free list, Linux maintains a list of buffers

for disks. In order to facilitate fast search, the Linux kernel

1The compute node may also act as a server serving multiple clients. However, we

do not study the interaction of multi-level caches in this paper.
2We distinguish the storage cache from the cache which is physically present on the

disk, which we will refer to as the “disk cache.”
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Fig. 2. Individual hit rates of different applications for varying storage cache sizes.

Applications used above have been described in Table II. Details of setup used to collect

this data are given in Section V-A. Note that prior work [17] reports a similar behavior

for tpc-h.

implements a hash table. When there is a request for data, the

disk buffer list is searched. If it is already in the buffer cache,

the pointers are rearranged to reflect the access (depending

on the cache replacement policy). If not, a buffer from the

free list is allocated for the data. If there are no buffers on

the free list, the data in one of the buffers in use is replaced

with the new requested data (the victim chosen depends on

the replacement policy). In our experiments, we study this

storage cache behavior in detail. We use the Linux default

cache replacement policy, LRU, for all our experiments.

III. OUR APPROACH

We start by presenting some experimental data that il-

lustrates the need for dynamically changing storage cache

partitioning at runtime. Fig. 2 shows the cache hit rates of

four different applications under varying storage cache sizes

when each of them solely occupies the cache. One can observe

from this figure that different applications behave differently

as the storage cache capacity is increased. For example, we

see that the hit rates of lu and tpc-c are increasing with

increase in the storage cache size (up to a certain point beyond

which the curves become flat), whereas that of mplayer and

tpc-h are more or less constant irrespective of the cache

size. Hence, we may conclude that some applications benefit

considerably as they are given more storage cache space while

others do not necessarily benefit substantially when given

increasing cache size. Clearly, a good dynamic partitioning

policy should be able to recognize the difference between

these two categories of applications, and allocate storage cache

partitions accordingly.

Fig. 3 plots the hit rate behavior of the same applications

over time given a constant cache size.3 As can be seen from

this figure, the hit rate of the application is subject to the

phase in which the application is executing and varies from

3Note that the sampling time (10ms) is much smaller than what it would have been

in a real execution, since we are using a simulator that is orders of magnitude faster

than a real execution environment. The simulator does not actually access the disk. It

only calculates the time incurred by a hit/miss. We also plotted the above graphs using

different sampling intervals ranging from 10ms to several seconds. The shape of the

graphs do not change.
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Fig. 3. Hit rates of different applications over time in a 256MB storage cache. Hit rate sampling interval is 10msec. Applications used above have been described in Table II.

Details of setup used to collect this data are given in Section V-A.

phase to phase. Therefore, we can appreciate the difficulties

in implementing a good dynamic partitioning scheme which

must take into account this varying application behavior. The

scheme we propose and evaluate in the rest of this paper

addresses these dynamic variations of cache hit rates.

A. QoS Specification and Optimization Goal

The goal of our scheme is to ensure that the access latency

of an application i must be less than or equal to its specified

access latency (QoS), TQoSi
over a time period Te where Te

may be of the order of minutes to a few hours. If tei
is the

execution time of application i, tc is the time required to access

the cache, td is the average disk access time and hi is the

application hit rate, then its average execution time can be

estimated as tei
= tc×hi + td× (1−hi). In practice, tc ≪ td.

For instance, [7] uses tc = 0.2ms and td = 10ms in their

modeling.

Thus, in order to reduce application execution time, we

try to increase the hit rate of the application. We define the

“overall cache hit rate” as the ratio of the total number of

storage cache hits to the total number of storage cache accesses

made by all concurrently running applications since the time

the first application was instantiated on the system i.e. since

time = 0. The overall storage cache hit rate is different from

the individual hit rate of an application (which accounts for the

hits and accesses of the individual application only since its

instantiation on the system), and captures all hits and accesses

coming from all applications that exercise the storage system

since the initiation of the first application on the system.

In order to decrease the overall execution time, we must

increase the overall storage cache hit rate and to do so, we

try to effectively increase the individual application hit rates

while maintaining the application QoS. Our scheme satisfies

the application QoS if it is possible to do so and decreases

the overall execution time by controlling the application hit

rates. We do so by controlling the cache space allocated on a

per application basis. Thus, for application i, if TQoSi
is the

QoS latency specified and HQoSi
is the application hit rate

corresponding to this latency, then, our scheme works such

that tei
≤ TQoSi

⇒ hi ≥ HQoSi

Our proposed idea could especially be employed by service

providers who want to use consolidated (instead of dedi-
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Fig. 4. High level operation of the storage cache partitioning scheme.

cated) infrastructure to reduce costs and provide isolation

while maintaining performance equivalent to a stand-alone

system. Our scheme is soft-QoS rather than hard-QoS centric,

i.e., we do not restrict applications from entering a system

(oversubscription); rather we try to satisfy the specified QoSs

of applications as much as possible (best effort). However,

if desired, our policies could be easily adapted to employ

throttling.

B. QoS Based Shared Cache Partitioning

Fig. 4 shows our high-level architecture. The pseudo-code

for our dynamic cache partitioning algorithm is given in Fig.

5. It is divided into several steps which are explained below

in detail.

Recall that our first goal is to satisfy the QoS specified for

an application. In order to satisfy the specified QoS, we need

to determine its cache space allocation. However, to determine

this cache capacity, we need to predict the performance (hit

rate) of the application for a cache capacity range (so that we

can select the right one). This prediction is done using curve

fitting and is illustrated in Fig. 6 for the tpc-c case.

Our curve fitting uses piecewise linear interpolation to

construct a curve from the available data4. However, note

4Selection of the model (linear, spline etc) used for curve fitting is orthogonal to the

focus of this paper. However, we select linear curve fitting as it has a low computational

overhead and is fast compared to other methods of curve fitting.



Ctot: total cache size

Cfree : total free cache size

N : number of apps running

concurrently

QoSj : QoS of app j
Hitj : hits of app j

Accessesj : accesses of app j
Cj : cache partition size of app j

Fj : flagged status of app j
numflag: number of apps

whose QoS is not satisfied

Partition()

// Profiling

for j ← 0..N − 1 do

HRj ←
Hitj

Accessesj

× 100

// Repartitioning step

Cfree ← Ctot

sum← 0
for j ← 0..N − 1 do

Cj ← curve fitting(QoSj)
deltaj ← max(HRj)−HRj

sum← sum + deltaj

numflag ← 0

// Flagging the apps

for j ← 0..N − 1 do

if Cfree ≥ Cj

Cfree ← Cfree − Cj

Fj ← 0
else

Cj ← 0
Fj ← 1
numflag ← numflag + 1

// Non-flagged apps

if numflag = 0
for j ← 0..N − 1 do

Cj ← Cj + Cfree ×
deltaj

sum

// Flagged apps

if numflag 6= 0
for j ← 0..N − 1 do

if Fj = 1

Cj ←
Cfree

numflag
Cfree ← 0

Fig. 5. Our QoS based shared cache partitioning algorithm. The algorithm tries to

maximize the number of applications whose QoS will be satisfied. If it is able to satisfy

every application’s QoS, it tries to maximize the overall cache hit rate. If the available

cache is insufficient to satisfy the QoS, it will always try to give applications whose

QoS is not satisfied an equal share of the remaining cache instead of penalizing such

applications completely.

that a linear model in this context does not necessarily imply

a linear relationship between two quantities. In fact, from

Fig. 2, the curve of hit rate versus cache size is exponential

i.e, hr ≈ a(1 − e−bC), where hr is the hit rate of the

application and C is the corresponding cache capacity and a, b
are some arbitrary constants which depend on the application

characteristics such as data reuse, locality, access pattern,

prefetch policy, etc. The interpolation used in the curve fitting

converts a sparse and interspersed dataset into a regular dataset

which can be used to predict the minimum storage cache size

required to satisfy the QoS.

For instance, in Fig. 6, the dotted line represents the inter-

polated hit rate-cache capacity curve obtained from 5 points.

In the next iteration when a new data point is collected, the

new data overwrites the old data so that when the interpolation

is rerun we obtain the solid line. The new data causes a shift

in the curve. Thus tpc-c now has recorded a higher hit rate for

a smaller cache size implying a decrease in the partition size

required to satisfy its QoS. If the QoS value specified by the

user is 68%, the curve fitting will predict that it takes less than

5000 cache blocks to achieve this target hit rate instead of the

earlier value of nearly 8000 cache blocks required to achieve

the same target hit rate. (the points used in Fig. 6 are initial

profile points and their accuracy is not very important as will

be explained below. Another behavior that can be observed

from the figure is that the hit rate of the application increases

with decreasing cache size. This behavior can be explained by

observing Fig. 3(c) where we see that tpc-c’s hit rate drops

for the same cache size depending on the phase in which it is

executing.)

The first step of our approach is called the profiling step

and its main purpose is to obtain initial data points to start
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Fig. 6. Instance of curve fitting captured during the execution of tpc-c under a storage

cache of 64MB. The dotted line represents the interpolated hit rate-cache capacity curve.

In the next iteration when a new data point is collected, the new data overwrites the old

data so that when the interpolation is rerun we obtain the solid line. The new data causes

a shift in the curve. Thus tpc-c now has recorded a higher hit rate for a smaller cache

size implying a decrease in the partition size required to satisfy its QoS.

predictions. While we target three initial points, this can be

any number larger than two.

The profiling step is off-line, that is, applications are stat-

ically profiled before they are initiated on the system. If the

target storage cache can hold Y blocks, we can profile the

application to be initiated on three representative cache ca-

pacities: 1, Y/2, and Y blocks and obtain three corresponding

performance points (hit rates). These points constitute our

initial entries in the performance table maintained for that

application. Profiling to obtain initial points is the only static

component of our approach. The rest of our approach is

dynamic and modulates the cache allocations of individual

applications such that their QoS requests are satisfied.

Finally, the initial points collected may not be very accurate.

However, this is not a major problem as these are only

initial data points to start predictions and as an application

executes more and goes through several rounds of cache

allocations (of different sizes), we can expect more accurate

future predictions. Additionally, whenever we obtain a new

cache hit rate for a cache size that is already present in the

table, we replace the old data in the table with the new point

(i.e. different hit rates under the same allocated capacity at

different points in execution) so that the algorithm captures

‘phase changes’ in addition to the ‘hit rate versus cache size’

behavior of an application. Another concern that may arise

is that the application behavior is derived from a completely

different phase of an application. However, applications are

sampled regularly at every quanta (fixed). An application

phase lasts over several quanta. Even though applications have

multiple phases, these phases typically last over several quanta

and hence the partitioning strategy is good while the phase of

the application lasts. Also, when a phase transition takes place,

the curve fitting is always collecting new data and adapts its

partitioning accordingly as explained above to account for the

new phase.

• Repartitioning Step: This phase uses curve fitting

which initially works by using the three profiled points as



input and later utilizes all consequent points recorded during

the iterative profiling. The QoS specifications are fed into

this phase. The curve fitting constructs an approximate hit

rate curve using interpolation from these points. The curve

obtained using these points is a rough estimate of the real

hit rate curve the application exhibits as shown in Fig. 2.

Using this interpolated curve and the QoS specification, the

algorithm then calculates the minimum storage cache capacity

to satisfy the specified QoS for that application. In order

to maximize the number of applications whose QoS will be

satisfied, we sort these applications based on their minimum

required cache capacities. We then assign the physical cache to

each application starting with the one which requires the least

cache capacity until we are left with no free cache blocks or

until the QoS requirements of all the applications are satisfied.

We assume that all the applications have the same priority.

Each time the repartitioning is performed, more hit rate points

as well as more recent points are accumulated, increasing the

precision of the curve fitting as well as the quality of cache

partitioning. The amount of storage cache allocated to the

application might vary during every iteration. However, the

partition size allocated by the algorithm fluctuates around the

cache size where QoS is likely to be satisfied which is the

region of interest. During this repartitioning step, there are

two cases where an application’s cache requirements may not

be satisfied. The first case occurs when the cache demanded

by the application (as specified by the QoS) cannot be satisfied

by the physical storage cache in the system at all. That is, even

if we allocate all cache capacity to the application, it is not

possible to satisfy its QoS requirement. The other case occurs

when the QoS requirement of the application can be satisfied

in theory, but when other applications are considered, we may

not be able to allocate enough space to that application to

satisfy its QoS. Our algorithm does not distinguish between

these two cases and an application whose capacity requirement

(based on its QoS) cannot be satisfied in the current round of

partitioning is flagged, and we do not assign it any storage

cache space (in this step). Instead we revisit these flagged

applications later.

• Handling Non-Flagged Applications: We execute this

step only when there are no flagged applications and still

some free cache available. Since we want to maximize the

overall storage cache hit rate, our implementation distributes

the free cache amongst all the applications in proportion to

the projected gains that each application will exhibit in terms

of the hit rates. That is, we give more cache space to the

application that can contribute greatest to the overall cache hit

rate. If N is the number of concurrently executing applications,

hrj is the storage cache hit rate of the application j for the

minimum QoS predicted using curve fitting, max(hrj) is the

maximum recorded hit rate of application j and, Cfree is the

free cache space available for distribution, then each process

gets Cfree ×
max(hrj) − hrj

∑N

j=1(max(hrj) − hrj)
blocks of the free

cache. We base this premise on the fact that if an application

has shown a higher hit rate in the past and even though its

current hit rate may be lower, we are likely to see an increase

in the hit rate of this application if we give it more cache.

This can be observed from Fig. 3(c) where we observe a peak

in the hit rate of the application initially and then we notice

that the application hit rate goes down.

• Handling Flagged Applications: During this step, if

there is any free cache still available, we distribute the free

cache equally amongst all the flagged applications only. Since

it is difficult to satisfy the QoS of these applications, we chose

to give them an equal share of the cache rather than trying to

maximize the hit rate of these applications.

1) Example: In this subsection, we go over two example

scenarios to illustrate how our scheme operates. Let us assume

that three applications use the storage cache, and currently

these three applications occupy 40, 30 and 30 blocks re-

spectively of the 100 blocks of cache space. Assume further

that after the next round of curve fitting, we determined that

the specified QoSs for these applications can be satisfied by

allocating 15, 30, and 30 blocks of the cache space. This means

that while the second and third applications can maintain their

cache allocations, we can take away 25 blocks of cache space

from the first application and redistribute it. We measure the

gain of an application by calculating the difference between

its current hit rate and its maximum recorded hit rate. For

instance, if the current hit rates of these three applications

are 70%, 90% and, 90%, respectively, and the maximum hit

rate recorded for these applications is 85%, 92% and 95%

respectively, then we calculate the total of the difference

between the maximum recorded hit rates and the current

hit rates i.e., (85-70) + (92-90) + (95-90) = 22 and then

redistribute the remaining 25 blocks of free cache space in the

ratio 25 × 85−70
22 = 17, 25 × 92−90

22 = 2 and 25 × 95−90
22 = 6

amongst the three applications respectively.

Suppose now that the required minimum cache partitions to

satisfy the specified QoS values are 80, 70 and 40 cache blocks

for the three applications respectively (assuming that the

current partitions are 40, 30 and 30 cache blocks in that order).

In this case, clearly, the QoS of all the applications cannot be

satisfied simultaneously since we are clearly deficient by 90

cache blocks. Our scheme handles this case as follows. We sort

these applications in the ascending order of their minimum

cache requirements i.e., now we will begin assigning cache

to the third application, then the second and then the first

application. This is done in order to maximize the number of

applications whose QoS will be satisfied. However, we notice

that after assigning 40 cache blocks to application three, we

are unable to satisfy the QoS of applications one and two

and are left with 60 free cache blocks. We distribute these

remaining cache blocks to applications one and two equally

i.e., each one of them gets 30 cache blocks. The first, second

and third applications are now allocated 30, 30 and 40 cache

blocks, respectively.

IV. BASE CASES

We now explain the two base schemes against which we

compare our QoS aware storage cache partitioning policy.



TABLE I
MAJOR SIMULATION PARAMETERS.

Parameter Value

Processors 1

Number of Disks 1

Disk Capacity 9.1 GB

Disk RPM 10,045

Disk Seek Time 5 msec

Partitioning Interval 2 sec simulation time

Page replacement policy LRU

Cache block size 4KB

A. No-Partitioning

In this scheme, the entire cache is shared amongst all

competing applications as in Linux. There is no means of

providing isolation or QoS guarantees in this scheme. Applica-

tions having poor data locality and high I/O rates tend to push

out the working sets of applications with good locality and

small working sets. This scheme has been used traditionally

by most systems due to its ease of implementation. However,

this scheme cannot provide any isolation or service guarantees

to applications.

B. Equal-Partitioning

In this scheme, the storage cache is divided equally amongst

competing applications. Thus, this scheme is able to provide

isolation. However, it cannot adjust to the dynamic behavior

of applications. This scheme has the disadvantage that ap-

plications requiring more cache might end up getting lesser

cache and their hit rates may suffer considerably. Likewise,

an application that has little or no reuse and that requires

very little cache space might end up getting much more cache

space than required, without substantial boost in the hit rate.

As a result, the hit rates of other applications go down and

the overall cache hit rate suffers. This scheme may or may

not always increase the overall cache hit rate depending upon

the combination of simultaneously executing applications and

their cache space requirements.

V. EXPERIMENTAL EVALUATION

A. Setup

To test the effectiveness of our algorithm, we used the

AccuSim simulator [21] and augmented it with our QoS aware

partitioning algorithm5. AccuSim is a trace driven simulator

used to simulate the kernel buffer cache [21], [13]. The traces

used to drive the simulator are collected from live applications

running on Linux using the strace utility. Traces captured

contain information such as the process id, inode, size of I/O

block, type of I/O access (seek, read) etc. AccuSim simu-

lates I/O of an application accurately by interfacing with the

Disksim simulator [22]. It simulates computation by recording

the difference in time between successive I/O calls. AccuSim

also simulates the default Linux prefetching policy. We turned

on I/O prefetching in the simulator for all our experiments.

For our experiments, we maintained 1024 entries for every

5Simulations have been used extensively in the past [1], [3], [4], [5], [6], [7], [8], [9]

to verify several caching policies.

TABLE III
WORKLOADS (MIX TRACES) USED IN OUR EXPERIMENTS.

Workloads Application

I tpc-c, tpc-h

II lu, tpc-h

III mplayer, tpc-c

IV lu, mplayer, tpc-h

V lu, mplayer, tpc-c, tpc-h

VI tpc-c, tpc-c

VII lu, lu

application’s performance table (cache capacities and their

corresponding hit rates). All major simulation parameters used

are shown in Table I.

To simulate the different applications running simultane-

ously, we created workloads (mixes of traces) from the in-

dividual traces. Table II gives the applications used in this

study and Table III shows the workloads. We used the above

applications for the diversity that they exhibit in their access

patterns which range from sequential to random accesses and

low reuse to high reuse. Later, we also present results for

uniform workloads. As a consequence of increasing the hit rate

of an application, the application might run faster which may

cause contention on the path from CPU to main memory. In

our experiments, we assume that the bandwidth from storage

cache to the higher level caches/CPU is infinite. Modeling the

contention resulting from constrained bandwidth from storage

cache to CPU is beyond the scope of this paper6.

B. Results

Recall that our goal is to maximize the overall storage

cache hit rate while satisfying QoS of all the applications.

In the first set of experiments, we use workloads I, II and

III. Fig. 7 summarizes the overall and individual hit rates

of the applications that are running concurrently. The QoS

values used in our experiments are noted in the caption of

the figure. We show the results obtained for each workload

for the smallest cache size that is able to satisfy the QoS. As

is evident from these plots, our proposed QoS based cache

partitioning scheme is able to adapt the partition sizes such

that with a negligible drop in hit rate of one application (in

Figs. 7(a) and 7(c) the drop in hit rate is 0.7% and 0.4%

respectively), it is substantially able to improve the hit rate of

the other applications. In fact, our scheme is not only able to

provide isolation amongst the two competing applications, but

it is also able to achieve hit rates for most of the competing

applications almost as high as the case where the application

is the sole consumer of the cache. We would also like to

mention that our implementation has a very low software

overhead. The history information maintained is fixed and is a

tunable parameter whose size can be controlled. Additionally,

we invoke our curve fitting every 2s of simulation time which

corresponds to several minutes of application runtime. Also,

since we use piecewise linear curve fitting, our scheme has a

low computational overhead.

6However, when there are constraints, the effects of contention to main memory will

be negligible compared to the improvement brought about by reducing the disk accesses.

Also, a good caching policy used for L1-L2 caches should help reduce the contention.



TABLE II
SUMMARY OF THE APPLICATIONS USED.

Application Description Dataset Size Disk Requests

LU: lu decomposition is a method used in linear algebra to factor a matrix as a product of a lower triangular matrix and an upper

triangular matrix. LU decomposition is used in numerical analysis to solve a system of linear equations. We used the out-of-core (OoC)

implementation from ScaLAPACK [18].

576 MB 1133571

Mplayer: mplayer is a software used on Linux for playing movies. This benchmark was used to represent streaming kind of applications.

We used mplayer v1.0rc2 for our experiments. This category of applications typically exhibit sequential data accesses and hence they

have low temporal reuse and, high spatial reuse.

1 GB 358922

TPC-C: The Transaction Processing Performance Council (TPC) [19] benchmark C is an on-line transaction processing (OLTP)

application. It involves a mix of five different concurrent transactions of different types and complexity. TPC-C simulates a large

environment in which users are executing transactions on a database. We used an open source implementation of tpc-c known as

TPCC-UVa [20] that works with PostgreSQL v8.1.4 (another open source database).

137 MB 861320

TPC-H: tpc-h is a decision support benchmark from the OLTP suite of benchmarks. We used the tpc-h implementation provided

by TPC with the open source database PostgreSQL v8.1.4. TPC-H exercises different ad-hoc queries and concurrently modifies the

database. The queries involve a huge volume of read and write requests. For our experiments, we exercised query 17.

1 GB 15150904
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Fig. 7. Individual and overall hit rates of the applications in workloads I, II and III. (a) Workload I, 64MB cache, QoStpc−h = 94%, QoStpc−c = 85%. (b) Workload II,

256MB cache, QoSlu = 70%, QoStpc−h = 94%. (c) Workload III, 64MB cache, QoSmplayer = 98%, QoStpc−c = 85%. Note that in the absence of partitioning, it

would require caches of size 128MB, 512MB and 256MB to satisfy the same individual QoS values specified by the user.
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(c) QoS Based Partitioning

Fig. 8. Modulation of cache hit rate over time for workload III for a 64MB cache, QoSmplayer = 98%, QoStpc−c = 85%.

Fig. 8 shows the hit rate variations over time for workload

III for the no-partitioning, equal-partitioning and our QoS

based cache partitioning cases. As can be seen from the figure,

the overall and individual hit rates of the applications under the

QoS aware scheme not only satisfy the user specified QoS, but

also are much better than the corresponding hit rates achieved

by the no-partitioning and equal-partitioning schemes. Observe

that the final cache hit rate of the applications achieve the

target QoS values rather than the hit rate sampled every time

quanta. We aim for a long term satisfaction of QoS rather

than trying to satisfy the QoS at every sampling instance.

Thus, our scheme is more cumulative rather than reactive.

Fig. 9 shows the cache usage (number of cache blocks in

use) of the individual applications for workload III over time

for the different partitioning schemes. From the figure, we see

that even though tpc-c dominates the cache usage, mplayer

is causing interference in the cache and tpc-c is unable to

achieve its full potential hit rate in the presence of mplayer.

Equal-partitioning is unable to provide any respite to tpc-c.

Instead of assisting tpc-c in achieving a better hit rate, the

cache usage of tpc-c goes down and the overall hit rate of the

storage cache suffers. We observe that our QoS-based adaptive

scheme is able to detect and give more cache to applications

that demand more cache to achieve higher hit rates rather than

to applications that are able to sustain a high hit rate given a

small cache allocation. We note from Fig. 9(c) that our QoS

based scheme adapts quickly while deciding the application

partitions. This is because our objective is to achieve the
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Fig. 9. Storage cache usage over time for workload III for a 64MB cache, QoSmplayer = 98%, QoStpc−c = 85%.
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(b) Workload V

Fig. 10. Individual and overall hit rates of applications for workload IV and workload V

(a) Cache Size 256MB, QoSmplayer = 98%, QoSlu = 70%, QoStpc−h = 94%,

(b) Cache Size 1024MB, QoStpc−c = 93%, QoSmplayer = 98%, QoSlu =
82%, QoStpc−h = 94%.

QoS values over a long period of time as opposed to some

approaches which try to maintain QoS values per time quanta

which we term as instantaneous QoS based partitioning. Keep

in mind that even though our QoS based partitioning captures

the two-fold behavior of an application over time and over a

range of cache sizes, we run the curve fitting on data collected

for different cache sizes. Hence, our scheme always predicts

the final size of the cache that will be required to achieve

the QoS values and therefore we see the quick stabilization.

Observe that the x-axis of (a), (b) and (c) in Figs. 8 and

9 is different since it represents the overall execution time.

Whenever there is an increase in the hit rate, the x-axis reflects

the application speedup (decrease in runtime). This applies to

all the results presented in this paper.

In the next set of experiments, we studied the effect of

varying the number of simultaneously executing applications

on our algorithm. We captured traces with three and four

simultaneously executing applications. Figs. 10(a) and (b)

show the individual hit rate and the overall hit rate of all

applications in workloads IV and V, respectively. From the

figure, it can be observed that our partitioning scheme su-

persedes the no-partitioning and equal-partitioning case. From

Figs. 10(a) and (b), we observe that our scheme maximizes

the individual hit rates over the other partitioning schemes

resulting in improvement in the overall hit rates. Fig. 11 shows

the hit rate modulation over time for workload V. Our proposed
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Fig. 13. Individual and overall hit rates of workload III with different QoS values

for a cache size of 256MB. QoSmplayer = 98%, QoStpc−c = 94%. Refer to Fig.

12(c) for results obtained using the old QoS values.

scheme boosts the hit rate of tpc-c and lu by taking away cache

space from the applications mplayer and tpc-h which tend to

pollute the cache with their large number of accesses.

1) Sensitivity Analysis: We present a study of the effect

of variation in parameters on our cache partitioning scheme.

In these sensitivity experiments we explored: (i) varying the

storage cache size and keeping the QoS constant, (ii) varying

the QoS while keeping the number of applications constant,

(iii) varying the QoS amongst multiple instances of the same

application.

To understand the effect of varying the storage cache size

while keeping the QoS constant, observe Fig. 12. In this figure,

we see a cache size which is too small to accommodate the

QoS as well as a cache which is too large. From the figure,

we see that even if the cache is too small to accommodate

the QoS values, our scheme still achieves the best hit rates

possible. However, Fig. 12(c) shows that if the QoS value is

much below the maximum hit rate that is achievable by an

application for the physical cache size, our algorithm will try

to maintain the hit rate close to the QoS region and distribute

the remaining free cache space proportionally amongst the

applications resulting in a hit rate comparable to the equal-

partitioning case. Thus we conclude that if the QoS is badly

specified, the performance of our scheme is comparable to the

equal-partitioning scheme.

In the next set of experiments, we kept the number of

simultaneously running applications constant and varied the

QoS. The old QoS values are specified in the caption of Fig.

12 while Fig. 12(c) shows the results obtained using the old

QoS values. Fig. 13 shows the results obtained for a 256MB
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Fig. 11. Modulation of cache hit rate over time for workload V for a 1024MB cache, QoStpc−h = 94%, QoStpc−c = 93%, QoSmplayer = 98%, QoSlu = 82%.
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Fig. 12. Individual and overall hit rates of the applications for cache sizes of 32MB, 128MB and 256MB for workload III, QoSmplayer = 98%, QoStpc−c = 85%. Refer

to Fig. 7(c) to see the hit rate of workload III for a cache size of 64MB for the same QoS values.

cache using the new QoS values. The results indicate that

specifying a higher QoS value actually improves the individual

hit rates. The results obtained are consistent with the results

obtained earlier where we vary the cache size instead of the

QoS values. Next, we executed multiple instances of the same

application and varied the QoS amongst the different instances

of the application. We chose tpc-c and lu for these experiments.

Fig. 14(a) sums up the overall hit rate and individual hit rates

of tpc-c when run concurrently and using different QoSs while

Fig. 14(b) shows the results of our partitioning scheme when

using multiple instances of lu having different QoSs. As can be

seen from the figure the no-partitioning and equal-partitioning

cases behave alike and the two applications get similar hit

rates. However, our scheme is able to distribute the cache

amongst the two different instances so that each instance is

able to satisfy its user-specified QoS. Additionally, we also

increase the overall hit rate of the storage cache while doing

so.

VI. RELATED WORK

Many researchers have explored shared storage cache parti-

tioning designs that attempt to avoid conflicts among multiple

applications [23], [1], [2], [24], [5], [8], [25]. Cao et al’s LRU-

SP algorithm [23], [1] partitions the buffer cache amongst

multiple processes using application disclosed hints. Karma [5]

partitions a multi-level cache accessed by a single client using

application hints in order to maintain exclusive caching. MC2
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Fig. 14. Multiple instances of the same application running on the system having

different QoSs. (a) 64MB cache QoStpc−c−I = 85%, QoStpc−c−II = 50%, (b)

256MB cache QoSlu−I = 5%, QoSlu−II = 68%.

[8] extends Karma and partitions a multilevel cache globally

and locally using application supplied hints about the access

pattern and frequency of access. Redline [25] partitions the

memory pages amongst interactive tasks such that it assigns

each task a budget consisting of 256 pages. [2] divides the

cache into three partitions to accommodate prefetched data,

hinted reuse data and unhinted reuse data based on hints

specified by an application to maximize the hit rates observed

in the cache. However, they do not provide QoS guarantees to

concurrently running applications in the system. In our work,

we propose a cache partitioning scheme that determines the

best partition sizes for multiple applications based on QoS

using curve fitting. Our approach does not rely on application



hints while guaranteeing QoS.

[26] performs offline cache partitioning by finding a cache

size such that hit rate derivatives are equal for all applications.

[14], [13] partition the shared file system cache between mul-

tiple processes by detecting the access patterns. [9] partitions

server buffers dynamically amongst the clients in accordance

to their working set sizes. [27] partitions the cache dynamically

amongst sequential and random I/O streams in order to reduce

the read misses in the cache. [17], partitions the cache equally

amongst competing applications with the aim of providing

isolation and efficiency. Our approach differs from their works

since we primarily consider QoS specified by the user and our

scheme does not require prior knowledge of access pattern of

an application.

The approaches which come closest to our work are [10],

[28], [29], [30]. [10] partitions the storage cache to provide

QoS by maintains a ghost buffer cache which contains a

list of all recently evicted blocks. [28] uses several feedback

controllers based on proportional, integral and derivative com-

ponents as well as maintaining a shadow list of all disk blocks

that have been accessed in the past. [29], [30] use digital

feedback control theory in order to provide QoS to web users

using a proxy web cache. [31] modifies the cache replacement

policy LFU to account for weights in order to provide QoS

to web cache users. Our approach to partition the cache and

provide QoS guarantees to users is simpler, has less overhead,

does not rely on maintaining a ghost buffer cache, and is not

dependent on any particular cache replacement policy.

VII. CONCLUSION

We have experimentally demonstrated the inter-application

interference that takes place in the storage cache when multiple

applications use it simultaneously. We explain the different

kinds of solutions that have been proposed to this problem

which range from static to dynamic partitioning schemes.

We further identify the inadequateness of a static partitioning

scheme and explain the difficulty associated with implement-

ing a good dynamic partitioning scheme. We propose a novel

dynamic cache partitioning scheme that uses curve fitting.

Our scheme is able to capture the dynamic modulations in

application behavior over time as well as over different cache

sizes. We showed the effectiveness of our storage cache

partitioning scheme in reducing application execution latency

by increasing the individual hit rates of the applications by

67% and 53% over the no-partitioning and equal-partitioning

cases, respectively. Additionally, we were able to increase the

overall storage cache hit rates by 11% and 12.9% over the no-

partitioning and the equal-partitioning schemes, respectively.
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